PHYSICAL REVIEW E VOLUME 55, NUMBER 1 JANUARY 1997

Quantitative test of the mode-coupling theory of the ideal glass transition
for a binary Lennard-Jones system

Markus Nauroth and Walter Kdb
Institut fir Physik, Johannes Gutenberg-UniversijtStaudinger Weg 7, D-55 099 Mainz, Germany
(Received 5 August 1996

Using a molecular-dynamics computer simulation we determine the temperature dependence of the partial
structure factors for a binary Lennard-Jones system. These structure factors are used as input data to solve
numerically the wave-vector-dependent mode-coupling equations in the long-time limit. Using the so-
determined solutions, we compare the predictions of mode-coupling tH&HS) with the results of a
previously done molecular-dynamics computer simulafidhys. Rev. E51, 4626(1995; 52, 4134(1995].

From this comparison we conclude that MCT gives a fair estimate of the critical coupling constant, gives a
good estimate of the exponent parameter, predicts the wave-vector dependence of the various nonergodicity
parameters very well, except for very large wave vectors, and gives also a very good description of the space
dependence of the various critical amplitudes. In an attempt to correct for some of the remaining discrepancies
between the theory and the results of the simulation, we investigate two @ddliog modifications of the

theory. We find that one modification gives worse agreement between theory and simulation, whereas the
second one leads to improved agreemgd1063-651X97)02301-5

PACS numbdps): 61.43.Fs, 61.20.Ja, 02.70.Ns, 64.70.Pf

I. INTRODUCTION T., or the nonergodicity parametég(q), had to be consid-
ered as fit parameters of the theory, thus making the tests less
In the past few years strong evidence was given that fostringent. There are two exceptions to this. The first one is a
certain types of glass formest leastthe universal predic- system of colloidal particles whose glass transition was stud-
tions of the so-called mode-coupling thedCT) are cor- ied extensively in light-scattering experiments by Pusey, van
rect in that it was shown that, e.g., there exists a criticaMegen, and Underwodd]. The structure of such systems is
temperature T., the factorization property in the believedtobe modeled well by a system of hard spheres. For
B-relaxation regime holds, or two distinct diverging time the structure factor of the latter very reliable analytical ex-
scales can be observed. An introduction to the theory can H/€SSions are availablg] and thus were used by & and
found in some recent review articl¢s—3] and in Ref.[4] Sjagren to demonsirate that in th@-relaxation regime the
the reader will find a compendium of many investigationsdynam.'cs of the colloidal particles could be described very
performed to test the validity of the theory. The outcome ofwe” with MCT [8]. Subsequently, Fuctet al. demonstrated

; . that this hard-sphere model is also able to give a good quan-
most of these tests is that, at least for fragile glass former%t(,mve descriptFi)on of thew relaxation[9 10]9 The gecon?j

MCT is a valid theory, .although recent palculatlons h.avesystem is a model of soft spheres for which Barrat and Latz
shown that the theory might even be applicable to relat'velyshowec[ll] that MCT gives a fair quantitative description of
strong glass formers, such as glycei®l. Apart from some  antities such as the nonergodicity parameter and the criti-
noticeable exceptions, discussed below, most of the tesis,) coupling constant, which were determined by means of
done to check the validity of the theory investigated °”|Ycomputer simulationd12,13. Thus these two examples
whether theuniversalpredictions of the theory are correct. show that MCT is able to give not onlygualitative correct
The reason for this is the fact that thenuniversalpredic-  description of the dynamics of supercooled liquids, but that,
tions of the theory, e.g., the value ©f or the details of the at leastin some cases, it also givescmantitative correct
wave-vector dependence of the nonergodicity parametergiescription.
can be tested only for those systems for which the tempera- |n a recent computer simulation we studied the dynamics
ture dependence of the structure factor of the partial of a mixture of Lennard-Jones particl¢s4—18. It was
structure factors in the case of a multicomponent sysiem shown that at low temperatures the dynamics of this system
known with a fairly high accuracy. Since in most cases theseould be described very well by MCT. However, in these
structure factors were not available with the required accupapers only the universal properties of the theory were tested
racy, only the universal predictions of the theory could besince we used the data from the simulation to fit the occur-
tested. The drawback with these types of tests is that theng parameters of the theory. The goal of the present paper
various (nonuniversal parameters occurring in the theory, is now to compare the results of the simulation with the
such as the exponent paramekerthe critical temperature predictions of the theory without using any fit parameter at
all. The only input to the theory will be the partial structure
factors that were obtained from the simulation. In this way it
* Author to whom correspondence should be addressed. Electroniwill be possible to make a more stringent test of the theory
address: kob@maoses.physik.uni-mainz.de; than it was done in Refd14-18 and therefore to test
http://ww.cond-mat.physik.uni-mainz.dkbb/home_kob.html whether also for this system the theory is correct not only in
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a qualitative way but also in a quantitative way. q-k q-(q—k)
The rest of the paper is organized as follows. In Sec. lwe  Viqs(d, k)— i aCia(K) + T& Cig(q—k),
collect the MCT equations needed to compute the various (5)

guantities we investigate. In Sec. Il we give the details of

the model and of the numerical calculations. In Sec. IV we

present our results and in Sec. V we summarize and discussd the matrix of the direct correlation function is defined by
them.

II. MODE-COUPLING THEORY C”(q)_ ——[S 1(q)]” (6)

In this section we summarize the equations that are nec-
essary to describe the dynamics of the system within the
framework of MCT. Most of these equations can also beMaking use of the isotropy of the system, the expression for
found in Refs[11,19-23. M;;(q,t) can be reduced to a two dimensional integral:
We consider a two-component system of classical par-
ticles with particle concentrations; and massesm;,

i=1,2. In the following the dynamics of the system will be M. (q.0) = J jq+k
t

?escrlbed by means of the partial intermediate scattering ij (s 3mx,mw RE K

unctions

x> 2 Faa (01)F g5 (pyt)
Fij(a,)=(8pi(q,0 8pF (q,1)), 1) GF o oo

X{(A?+ k2= p?) 8 4Cia(K) + (q*+ p?—k?)
wheredp;(q,t) is the density fluctuation for wave vectgrat

2 2_h2\ s, .
time't of species. For a binary system it is useful to collect X 8iaCip(PIH(A"+ K= P%) G5 Cjar (K)
these functions in a 22 matrix F(q,t) with +(q%+p?=k?) 8,4:Ci 5 (D)} (7
[F(q,t)]ij=F;j(q,t). The equation of motion oF is given
by

The memory function for the incoherent intermediate scatter-

. t . ing functionF® is given b
F(q,t>+92(q>F(q,t>+fdTM<q.t—T>F(q,r>=o, ng function == 1s given by
0

2) ,
MO0 = [ H AR Cry kO FS (g kit
where the frequency matriQ? is given by (= 2m)3n\ q (ehik,OFZ(a-kt)
-tz | ok appiare - p)
[OH (@)l =a"keTOG /M) X 0[S M@y (3) 167°na*Jo ~ Jig-x
X (cF)i(k,HF(p,b), ®

Here S(q) stands for the X2 matrix consisting of the par-

tial structure factorsS;;(q). Within the mode-coupling ap- jth

proximation the memory terrivl is given at long times by
kgT dk

——| — (cP)i(k,t)=[ci(a)1?F;i(a,t) +2c;i(q)c;(@)F;j(a,t)
2nmin (2’7T)

+eij (PR (a,t),  j#i. 9

M;;(q,t)=

X2 2 Viep(@K)Vierp(d,0=K)
a a' '3
The matrix of the nonergodicity parameté(s) for the co-

XF aa (KDF g (q=k,1), (4) herent intermediate scattering function is given by the solu-
tion of Eqg.(2) at long times, i.e.f;;(q)=lim_..F;;(q,t). It
wheren is the particle density, the verték ,5(q,k) is given ~ can be shown that(g) can be computed via the iterative
by procedurg 23]

S(q) - N[fY,fD(q) - S(a)+ g2 S(a)[IN[FV,f D] (a)[S(a)
g?+Tr{S(q) - N[fD,fV](q)}+aq~2S(q)|IN[FV,f D] (q)]

f1*(q)= (10
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where the matriXN(q) is given by The procedure to compute the nonergodicity parameters is
now the following. Given the partial structure factors for a
m temperaturel that corresponds to the glass state one com-
Nij(a)= XikgT Mi;(Q). (12) putes from Eqs(6) and(7), the memory kernel and iterates
Eq. (10) until f)(q) has converged. Then the stability matrix
For temperatures above the critical temperafiy¢his itera- C(q) and its largest eigenvalug, are computed. It can be
tion converges to the trivial solutiof(q)=0 whereas for shown that in the vicinity of the critical temperatufe the

T<T, it converges to a nontrivial solutioffq)>0. relation
The incoherent nonergodicity paramefé? can be com- 5 5
puted from the iterative procedure (1-E)*=A(Tc—T)+O(Tc—T)%) (19
£(s1+1)(q) holds, which can thus be used for a precise determination of
q21_'f(syl+1) :Mi(s)[f,fi(svl)](q)_ (12) T.. Having determinedr;, we can compute the_ right and
i (a) left eigenvalue ofC at T, and thus obtain the critical ampli-

tudesh;;(q) and the exponent parameter[Egs. (17) and

In order to determine the critical point it is useful to consider 18)]. Using the nonergodicity parameters of the coherent
the so-called stability matri€, which is defined by its action i iermediate scattering function, we can use E@.and

on a vectorsf(q) = (6f11(q), 6f1(), 6f22(q)), (12) to compute finally the nonergodicity parameter for the
incoherent intermediate scattering function.

1
(C-df)(a)= —[S(a)—f(a)]-{M[f,5f](q)
q IIl. MODEL AND COMPUTATIONAL DETAILS

+Mof ()} [S(a)—f(a)]. (13 _ _ _ _ _
In this section we introduce the system we investigate and
We defineE, to be the largest eigenvalue of this matrix give some of the details of our numerical calculations. More
e(k) = (e11(K),e15(K) ,e5(K)) as the corresponding right and details on these calculations can be found in [R28].

&(k) = (€14(K),e15(K),e55(k)) as the corresponding left ei- The model we are studying is a binary mixture of classical
genvector of this matrix. The normalization of these eigeniennard-Jones particles all of them having massThe in-
vectors is given by24] teraction between two particles of type and j (i,j

e{A,B}) is given by V;(r)=4e;[(oy; /1)~ (o /1)°].
* - The parameterse,; and o,; are given by ean=1.0,
JO dkn:%zyzzedk)en(k):lv (19 15 €3u=08 0an=1.0 0rg=0.8, andogse0.88
The composition of the mixture is such that=0.8 and
o xg=0.2. In the following we will measure length scales in
f dk en(k)[ek)-[S(k)—f(k)] L -e(k)],=1. units of o5 and energy in units oé,, and setkkg=1.
0 n=111222 In a recent simulation the dynamics of this system was
(15 investigated by means of a molecular-dynamics computer
simulation [14—18. This simulation used 800 particles of
type A and 200 patrticles of typB. The size of the cubic box
was held fixed at =9.4. In order to lower the computational
burden the Lennard-Jones potential was truncated and shifted
_ at a distance of 2&,;. More details on that simulation can
Fila.)=fei;(@)+hy(@)g(t), (18 be found in the origiﬁal papers. In that work also the partial
whereg(t) is a function that is independent gfand whose ~ Structure factorsS;;(q) were calculated. This was done by
form depends on temperature and the so-called exponent pg@mputing the space Fourier transform of the radial distribu-
rameter\, andf,; are the nonergodicity parameters at thetion functiong;;(r). Because of the finite size of the system
critical temperature. This critical amplitude is given by the this Fourier transform gave rise to unphysical oscillations in

value of the right eigenvector at the critical temperatureth® structure factors at small valuesfSince these struc-
T., i.e., ture factors are théonly) input in the mode-coupling equa-

tions, such unphysical oscillations would possibly modify
hij(a)=ec,i(q). (17)  the outcome of the MCT calculations. Therefore we repeated
' the simulations and computed the partial structure factor di-
The value of the mentioned exponent paramatés given  rectly from the positions of the particles by means of &9.
by and thus avoided the above-mentioned Fourier transform. In
order to filter out high-frequency noise iq the so-
o . determined structure factors were smoothed with a spline
)\:f dg €c,n(q) under tension. Because of the finite size of the box, wave
0 n=11,12,22 . .
vectors with modulus less than@m2L are not accessible.
1 Therefore we extrapolated the determined partial structure
—[S(a) = f(a)]-M[e;,e]- [S(q) — (]| - factors toq=0.
q N . .
These new simulations were done only for a few selected
(18)  values of the temperature, all of them in the vicinity of

The critical amplitudesh(q)=(h11(q),h12(q),h.x(q)) de-
scribe the dynamics of the system in {Beelaxation regime,
ie.,

X
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the critical temperature, i.e., dt=1.0, 0.8, and 0.6. For a

precise determination of the critical temperature we also & 25
needed the structure factors at intermediate values of the 2
temperature. Therefore we used the structure factors at the 2.0
three mentioned temperatures and a quadratic interpolation

scheme to compute the structure factors for intermediate 1.5
temperatures. Since in this temperature region the structure

factors show only a weak variation with temperature, such an 1.0
interpolation scheme should be fairly reliable. More details

on the so-obtained structure factors are given in Sec. IV. 0.5 ]

The integral equations presented in Sec. Il were solved
iteratively in the way described in that section. The occurring
integrals were computed using a high-order Simpson 0.0
scheme.(Note that it is necessary to use an integration
scheme that accesses only points that are spaced in an equi-
distant way since the integrals involve convolutions. There-
fore more efficient integration schemes such as Gaussian
guadrature cannot be usg@he upper limit of the integrals
was set toq.,=40, which is sufficiently large to allow the
direct correlation function to be negligible small for
>0, In order to perform the integration we used 300 grid
points in the interval[0,0.,]. A few calculations with a
larger number of points showed that this number is suffi-
ciently large to neglect the dependence of the final results on
the used discretisation scheme.

Close to the glass transition the convergence of the itera-
tion scheme given by Eq10) was quite slow since the
maximum eigenvalue was very close to unity (E,
~3x%10 3, which corresponds ta@—T,~1x10 %), and . .
only after 1000—2000 iterations reliable results could be ob- ?c:n
tained. Thus such an iteration took about 24 h on a medium o
level workstation. Note that in order to get results that are
accurate to within 1% it is indeed necessary to determine 0.20 1
T. that precisely, since, e.g., quantities such as the nonergod-
icity parameters show a square-root dependence on
(T—-To). 0.15 -

IV. RESULTS 0.10 ,___’//’

In this section we present the obtained results. In the first - - ‘
part we investigate whether MCT, as presented in Sec. Il, is 0.0 5.0 100 15.0 q 200
able to predict correctly various quantities that are relevant in
the dynamics of the supercooled liquid. In the second part we

test whether two possible modifications of MCT lead to even

better agreement between the theory and the simulation. the interpolation to obtain the partial structure factors at the critical

The partial structure faCtOrSj(q), (.:rUCiaI input for the . _temperature:T=1.0 (dotted ling, T=0.8 (dashed ling and
theory, were computed as described in Sec. Ill. The res”|t'”9=o.6(solid line). (a) AA correlation,(b) AB correlation. andc)

structure factors are shown in Fig. 1 f6=1.0, 0.8, and 0.6.
[Note that, although in our computation we usgd(q) for
all values ofq up to q,,=40, we show only the range considered here, MCT overestimates the critical temperature
0=q=20, since outside this interval the structure factors aréyy about a factor 2. Since the idealized theory neglects cer-
almost constanf.From this figures we see that in that rangetain types of relaxation processes, which are usually called
of temperature the dependence of the structure factors dopping processes, it can be expected that the critical tem-
temperature is very smooth, thus justifying the interpolationperature predicted by the theory is too high. Neverthelsss,
procedure described in Sec. 1l to obtain the structure factorfirst sight the factor 2 seems to be surprisingly large when
at intermediate values df. compared with the results of similar comparisons between
Using the procedure described in Sec. Il, we determinedhe prediction of MCT for the value of the critical coupling
the critical temperatur€ to be around 0.922. This value has parameter and the results of experiments or computer simu-
to be compared with the result that was obtained from thédations. For example, it was found in light-scattering experi-
molecular-dynamics computer simulation, which wasments on colloidal particles, a system that is considered to be
T=0.435-0.003[14-18. Thus we find that, for the system described well by a hard-sphere model, that these systems

FIG. 1. Partial structure factors for those temperatures used for

BB correlation.
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undergo a glass transition at a packing dengftythat is  nent and the exponent parameteholds[1], one obtains the
between 0.56 and 0.5%]. This value compares well with quoted value of\. However, there are two reasons why the
the critical packing density of 0.520.01 of MCT for a sys-  so-determined value of might be slightly wrong: First, the
tem of hard spheregl27]. Thus, in this case the discrepancy value of the critical exponent is not known very precisely
between the experiments and the theory is about 10%. In th@2,13 and, second, it might well be that the above-
case of a binary system of soft spheres, i.e., a pair interactiomentioned connection between the critical exponent for the
that is proportional ta ~*?, it was found by means of com- diffusion constant and the exponent parameter holds only
puter simulations that the glass transition occurs at a value afery close to the critical temperatufer coupling param-
the effective coupling constairit of 1.46[12,13. It can be  eter. For example, in the simulation of the binary Lennard-
shown thatl” is the only relevant parameter for the thermo- Jones system it has been found that the critical exponent for

dynamic state of such a system and that the diffusion constant and the one for therelaxation times
differ by about 2094 16|, although MCT predicts these ex-
FoenT 4 (200 ponents to be the same. Thus this shows that either the con-

nection proposed by MCT is not always valid or, in order to

wheren is the particle density. Using the Roger-Young in- see the correct critical behavior, one has to be much closer to
tegral equations to compute the structure factors for this syshe critical temperature than it is currently possible with
tem, Barrat and Latz computed the critical value of the coucomputer simulationgecause very close to the critical point
pling constant within the framework of MCT and found it to the time scales of ther relaxation exceeds the time scale
be 1.32[11]. Using expression20) we thus find that the accessible to such simulation§urthermore, it can be that in
discrepancy is about 10% in the density, comparable to théhe vicinity of T, the so-called hopping processes become
above-mentioned discrepancy for the hard-sphere systerimportant for the soft-sphere system and thus give rise to an
but about 50% in the critical temperature. effectiveexponent that is different from the one predicted by

Expression(20) is valid only for a soft-sphere system. the theory. Thus because this connection between the critical
However, since at low temperatures it is mainly the repulsiveexponent of the diffusion constant and the exponent param-
core of the particles that is important for the structure of theeter A is not beyond any doubt, the value »fin the soft-
liguid, it can be expected that for a Lennard-Jones systengphere model is not known very precisely. Finally, we men-
which has the same type of hard core as the soft-sphere syen that in the comparisons between the prediction of MCT
tem, expressiofi20) is a reasonable approximation. This ex- and the results of the experiments on colloidal systems the
pectation is corroborated by the calculations of Bengtzeliusatter were always assumed to be hard spheres and thus the
in which the critical temperatur@, was determined at dif- exponent parameter was not a fit paramégér
ferent densities for the case of a one-component Lennard- We now turn our attention to the wave-vector dependence
Jones systentthe structure factor was computed from the of the nonergodicity parameter. This quantity was deter-
so-called optimized random-phase approximatif26]. In  mined in the simulatiofj16] and the results are shown for
that work it was shown that a change of 10% in density giveghe coherent intermediate scattering functions forAtde the
rise to a change of a factor 2 ., in qualitative agreement AB, and theBB correlation(bold dashed lings as well as
with the results for the soft-sphere system. Thus we concludior the incoherent intermediate scattering function for Ahe
that a discrepancy of a factor 2 in the critical temperatureand theB particles in Fig. 2(thin dashed lings For small
correspond to a discrepancy between theory and simulatiovalues and very large values df it was not possible to
of only 20% in the coupling constant, which is comparable todeterminef; from the simulation because of problems with
the discrepancy found in the above-mentioned hard-spheffinite-size effects and statistics. Also included in the figure
system and the soft-sphere system. are the predictions of MCTsolid line9. First we consider

The next quantity for which we compare the prediction of Fig. 2(a), which showsf.(q) for the AA correlation and the
the theory with the result of the computer simulation is theA particles. The first observation is that the theoretical curves
exponent parametex. In the simulation this parameter was match the ones of the simulations qualitatively well for all
determined by fitting the functional form provided by MCT values ofq in that the location of the various extrema in the
for the B correlator[1] to the corresponding master curves f.(q) for the coherent scattering function are reproduced
found in theB-relaxation regimd16,18. Depending on the correctly. In addition, the fact that for large valuesopthe
type of correlator investigated, the valueofwas found to  nonergodicity parameter for the coherent scattering function
vary between 0.75 and 0.83 with the most likely value ofoscillates around the one for the incoherent one is repro-
A=0.78+0.02. Our MCT calculations showed that for this duced correctly by the theory.
system the theory predicts a value of 0.708, which compares For wave vectors in the vicinity of the first peak of the
quite well with the one found previously in the simulation. structure factor, also thguantitative accordance between
The discrepancy i between theory and computer simula- theory and simulation is very good. This agreement is not as
tion is in our case smaller than the one found for the softgood for wave vectors larger than the second peak in the
sphere system, for which the theory predicted0.73[11]  structure factor. This can be due to two reasons. The first one
and for whichA=0.61 was found in the simulation. This is that the nonergodicity parameters as determined from the
latter value, however, probably has a relatively large errosimulation are affected by systematic errors of unknown
bar, since it was determined from the critical exponent of themagnitude[16]. From the way these quantities were mea-
diffusion constant close td'.. This critical exponent was sured it can be expected that these errors increase with in-
determined to be around 202,13 and, if it is assumed that creasing wave vector, which might be the reason for the
the connection predicted by MCT between this critical expo-increasing discrepancy between simulation and theory. The
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FIG. 2. Nonergodicity parameter,(q) for the coherentbold
lines) and incoherentthin lineg intermediate scattering functions
as determined from the simulatigdashed lingsand as predicted
by MCT (solid lines. (a) A particles andAA correlation,(b) AB

correlation, andc) B particles andBB correlation.

second possible reason is that for large valueg MCT is

predictions of MCT is not as good for large valuesgods it
is for wave vectors in the vicinity of the peak of the structure
factor.

Furthermore, we comment on two smaller features in the
curves. First, we see that the curve for the nonergodicity
parameter for the coherent scattering functions, as computed
from the simulation, shows to the left and to the right of the
large peaksatq~7 and 12 a small peak. These small peaks
are a finite-size effect that is due to the method we computed
the intermediate scattering functi¢©6]. Thus the fact that
these small peaks are not present at all in the curve as com-
puted from MCT should not be viewed as a failure of the
theory to reproduce this feature. Second, we see that the
MCT curve for the coherent intermediate scattering function
shows some small peaks for wave vectors smaller than 2.
This behavior is likely to be due to numerical instabilities in
the computation of this curve and therefore has no physical
relevance.

The wave-vector dependence of the nonergodicity param-
eter for theAB correlation is shown in Fig.(®). In order to
make clear where the measured points actually are, we show
them as open squares and the connecting dashed line should
be considered just as a guide to the eye. We recognize that
this g dependence is very different from the one found for
the AA correlation. We see that for valuesgphear 7 and 10
there is a gap in the data of the simulation. The reason for
this is that in the vicinity of these wave vectors the partial
structure factor of thé\B correlation changes sign, which in
turn leads to a singularity and hence to numerical difficulties
in determining the corresponding intermediate scattering
function. Also included in the figure is the prediction of
MCT for this nonergodicity parameter. We see that for inter-
mediate values off the theoretical curve describes the data
very well and we see that MCT correctly predicts the pres-
ence of the just-mentioned singular behavior of the noner-
godicity parameter. For larger values @fthe agreement is
only qualitatively correct and the probable reason for this has
been given above.

In Fig. 2(c) we show the wave-vector dependence of the
nonergodicity parameter for the coherent and incoherent in-
termediate scattering function for tlie particles. From this
figure we see that for the coherent part this dependence is
very different from the one for thé particles since it re-
sembles much more theedependence of the incoherent part.
This can be qualitatively understood by remembering that
the number ofB particles is smaller by a factor 5 than the
number ofA particles. Thus, since thB particles are rela-
tively dilute the coherent intermediate scattering function be-
haves very similarly to the single-particle correlation func-
tion, i.e., the incoherent intermediate scattering function.

As we can see from the figure, MCT is able to reproduce

no longer reliable. This can be understood as follows. Thehe wave-vector dependence also of these two nonergodicity
large wave vectors correspond to distances that are relativefyarameters very well. Although the theoretical curves lie be-
small compared to the diameter of the particles. Now ondow the ones from the computer simulation for all values of
should remember that in the derivation of the MCT equationg), the agreement is, nevertheless, on the order of about 5%
a factorization ansatz was made. This ansatz is reasonable fimr intermediate values df.

distances on the order of the diameter of a particle, but is From Fig. 2 we recognize that in all cases the nonergod-
likely to be bad for much smaller distances. Thus it is ex-icity parameters as determined from the simulations is a bit
pected that the verticeg;,; of Eq. (5) are not quite correct larger than the ones predicted by MCT. This is in qualitative
for large values ofy or k. Therefore it is not surprising that agreement with our observation that the critical temperature
the accordance between the results of the simulations and tlas found in the simulation is quite a bit lower than the one



55 QUANTITATIVE TEST OF THE MODE-COUPLING ...

predicted by the theory, which can be understood as follows.
The nonergodicity parameter is some sort of measure for
how much a particle can move in the cage formed by its
surrounding particles. Since it can be expected that this
movement is smaller the lower the temperature is, it follows
that the nonergodicity parameter increases with decreasing
temperature. Thus we see that if MCT would have predicted
a critical temperature that is lower than the one it predicts
now, we would expect that the theoretical nonergodicity pa-
rameters would be larger than the ones the theory predicts
now. Thus we have evidence that the too high critical tem-
perature and the nonergodicity parameters that are too small
are related phenomena. We will return to this point below.
The fact that the predicted nonergodicity parameters are
smaller than the ones determined from the simulation moti-
vated us to compare the former with the amplitude of the
«a relaxation. It should be remembered that in the simulation
the nonergodicity parameter was determined from the height
of the plateau in the time correlation function. In these simu-
lations it was shown that the height of this plateaunat
equivalent to the amplitude of the Kohlrausch-Williams-
Watts (KWW) function, which describes the relaxation on
time scales beyond theB-relaxation time scale, i.e.,
o(t)=A exd —(t/7)P]. Since we have found that this KWW
amplitudeA is always a bit smaller than the nonergodicity
parametef16,18, a fact that is also corroborated by analyti-
cal calculations on the hard-sphere mddg] it is interesting
to compare they dependence of this measured amplitude
with the g dependence of the nonergodicity parameter as
predicted by MCT. This is done in Fig. 3. We see that for all
correlation functions the agreement between these two quan-
tities is very good. To our surprise we find that this agree-
ment is always better than the one between the nonergodicity
parameter of the simulation and the one of MCT, which was
shown in Fig. 2.(An exception is theAB correlation in the
range 5=q=<7, where the experimental point fér are now
clearly below the MCT curve At the moment it is not clear
to us whether this surprising accordance between the KWW
amplitude and the nonergodicity parameter of MCT is just a
coincidence or whether there is some underlying reason for
it. One possibility might be that the corrections to the asymp-
totic scaling laws of MCT are larger for thg-relaxation
regime than for thex-relaxation regime. Thus it would be
interesting to compute the full time dependence of the cor-
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FIG. 3. Kohlrausch-Williams-Watts amplitud® for the coher-

relation functions within the framework of MCT and to com- ent (bold lineg and incoherentthin lines intermediate scattering
pare the so-obtained results with the results from the simufunctions as determined from the simulati@ashed lingsand non-
lations. In addition, it would be helpful to make similar ergodicity parameter as predicted by MC3olid lines. (a) A par-
comparisons with other systems in order to see whether thécles andAA correlation,(b) AB correlation,(c) B particles and
just-described phenomenon holds for other systems as welBB correlation.

The last quantity we investigate is the wave-vector depen-
dence of the critical amplitudets(q). These amplitudes are which is obtained from the space Fourier transform of Eq.
used to describe the time dependence of a correlation fung16), holds if the timeg andt’ are on the time scale of the

tion in the B-relaxation regime; see E¢L6). In the computer

B relaxation. Here’ can be chosen arbitrarily. From that

simulation it was found that in thg-relaxation regime the calculation it was possible to estimate an upper and lower
various intermediate scattering functions are indeed of thgound forH(r), and these bounds are shown in Fig. 4 for the
form of Eq. (16) [15] in that it was demonstrated that the three coherent intermediate scattering functi¢ihen solid

left-hand side of

D(r,t)—d(r,t")

OO O—-d(r't) H(r')'

lines). The value ofr’ was 1.095, 0.9, and 1.73 for the
AA, the AB, and theBB correlation. Also included in the
figures are the prediction of MCT for these quantitibsld
solid lineg. From these figures we recognize that the agree-
ment between the results of the computer simulation and the
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FIG. 4. Critical amplitudeH(r) for the coherent intermediate
scattering function as predicted by MGlbold solid line and the
upper and lower bounds for this functigthin lines as determined
from the simulation. The dashed lines arémes the corresponding
radial distribution function atT=0.466. (a) AA correlation,
x=0.25; (b) AB correlation, x=0.2; and (c) BB correlation,
x=0.8.

prediction of the theory is, in the case of theA and the

distances. This is not surprising, since we have already ex-
plained above why MCT is not very accurate for large wave
vectors, i.e., small distances.

In order to gain some insight into the nature of the various
peaks inH(r) we have included in the figures also the cor-
responding radial distribution functiorgs;(r) at T=0.466,
the lowest temperature considered in the computer simula-
tion [15] (dashed curvgsWe see that, for values oflarger
than the first nearest-neighbor peak, the different maxima
and minima inH(r) occur at the same location at which the
correspondingy;;(r) shows its extrema. This means that in
g spaceh;j(q) shows extrema at the same valuegais the
corresponding partial structure factor. Since the latter shows
a similarq dependence as the corresponding coherent non-
ergodicity paramete(see Fig. 2, the nonergodicity param-
eter andh;j(q) will show extrema at the same valuescpfA
similar observation was made in the case of the soft-sphere
system[11] and thus it can be conjectured that this is a
general rule.

In the remaining of this section we present the results we
obtained by considering two small modification of MCT.
These modifications were done in an attempt to improve the
agreement between the results of the computer simulation
and the prediction of the theory.

The basic idea of the first modification is as follows. In
the first part of this section we have shown that MCT is able
to give a surprisingly good description of tigedependence
of the nonergodicity parameters and the critical amplitudes.
The most severe disagreement seems to be that the theory
overestimates the critical temperature by quite a bit. Further-
more we have seen that the theory underestimates the non-
ergodicity parameter and that this disagreement is most pro-
nounced at large values gf In the discussion of this effect
we argued that one of the reason for its occurrence might be
that a factorization ansatz, which is used in the derivation of
the MCT equations, breaks down for small distances and
therefore the MCT equations are not accurate for these val-
ues ofq. Therefore one could argue that it is better to leave
out from the calculation of the memory kernel in E4) that
part of the wave-vector integration altogether, i.e., to restrict
the integration to wave vectors with modulus less than a
certain limit qc,. This approximation is equivalent to the
assumption that the structure factor is constantgerg,.
Thus the value of;, can be used as a fit parameter in order
to match the critical temperature as predicted by MCT with
the one determined from the simulation. The hope is that this
fix of the critical temperature will lead to theoretical noner-
godicity parameters that are in better agreement with the
ones of the simulatiorfof course at the cost that for wave
vectors larger tham, the theory does not give any noner-

AB correlation, qualitatively as well as quantitatively very godicity parameter at all

good in that also small details in the curves, such as the small Thus we proceeded as follows. Using the partial structure
dip in the peak at around 1.8, are reproduced correctly. Th&ctors that we determined @t=0.466, 0.475, and 0.5, we
agreement between simulation and theory is not that good fanade an extrapolation to determine the partial structure fac-
the case of thé8B correlation in that the amplitude of the tors atT=0.435, the value of the critical temperature as de-
various peaks is not predicted correctly. However, the positermined from the computer simulation. Since at these low
tion of these peaks is in accordance with the theory and thuemperatures the temperature dependence of the structure
MCT is correct for this correlation function at least qualita- factors is only weak and very regular, such an extrapolation
tively. We also notice that in all three cases the agreemeris not problematic. Equipped with the structure factors at the
between theory and simulation is not very good at smalkorrect critical temperature, we determingg such that the
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T=0.435, i.e., the critical temperature from the simulation. 0.7 ] i
The value ofq., we obtained was around 11.7, i.e., a bit to '
the right of the first minimum in the partial structure factor 0.6 1 3
for the AA correlation. This value shows, on the one hand, 0.5 1 3
that it is mainly the first peak in the structure factor that is 0.4 ‘ ‘ ‘ ‘ ‘ ‘
relevant to give ajualitative correct description of the tran- 00 20 40 60 80 100 120 140
sition and, on the other hand, that foilgaantitativecorrect q
calculation of the transition temperature it is necessary to 1.0 : :
take into account the structure also for larger values).of 09l ©
With this value ofg., we computed thel dependence of the = 081 N\
nonergodicity parameters and the result for #& correla- = 0.7 ] o gB correlation
tion are shown in Fig. Fsolid line). Also included is the = \1\ particles
curve from the simulatiorfbold dashed lineand, as a refer- 0.6 L
ence, the curve wheqy, is 40, i.e., the value ofj, used to 05 N
compute the results of the first part of this sectighin 0.4 4 \\\
dashed ling From this figure we recognize that the curve for 0.3 \
the new value ofg., is now significantly below the curve 0.2 Saq
from the simulation and that the discrepancy between the 0.1 -
(modified theory and simulation is now quite a bit larger 0.0 : : : : :
than it was with the original theory. Thus this shows two 00 40 80 120 160 2%-0

things: first, that the contribution to the memory kernel that
come from values of] larger thamg,=11.7 are important in
order to get quantitatively correct results, despite the above- FIG. 6. Nonergodicity parametdi,(q) for the coheren{bold
discussed fact that the integrand is not quite appropriate fdines) and incoherentthin lines intermediate scattering functions
such large values af, and second, that it is not that easy to as determined from the simulatiddashed lines The solid lines
improve the theory qualitatively by introducing a fit param- are results for the nonergodicity parameter as predicted by MCT for
eter in order to fix certain shortcomings of the theéeyg., the temperatur@ +=0.91.(a) A particles andAA correlation,(b)
the not so satisfactory prediction of the critical temperature AB correlation, andc) B particles and3B correlation.

The second modification of the theory we did was to ig-
nore the fact that we have to compare the results forgthe for choosing this type of nonergodicity parameter, instead of,
dependence of the nonergodicity parameter as obtained fromg., the one for th& A correlation, is that in the simulation
the simulation with the prediction of MCT for the nonergod- it can be determined with the best accuracy. This fit gave a
icity parametest the critical temperature I Since we have value for T around 0.91, thus quite close to the original
seen that MCT underestimates the nonergodicity parametersitical temperaturel .=0.922. The resulting| dependence
and we know that for temperatur&s< T, the theory predicts of f{3) is shown in Fig. €a) together withf(®) from the simu-
that the nonergodicity parameters increase, we tried to collation. We see that for small and intermediate valueg tife
rect this discrepancy by computirf§?(q) at a temperature agreement betweeffs) andf'® is very good. Only for large
Tei below T, and to determinel; by requiring that this values ofqg significant, but not large, discrepancies occur.
nonergodicity parameter, which we will cal ?f) fits the  We also computed thg dependence of the other nonergod-
corresponding quantity from the simulation well. The reasoricity parameters for theame temperaturef and the results
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are shown in Fig. 6. From Fig.(& we see that for the tion, with theq dependence of the nonergodicity parameter
coherent nonergodicity parameter for thé correlation the  as predicted by MCT and found that the two quantities match
agreement betweef(q) and fq(q) has improved signifi- surprisingly well. So far it is not clear why this is the case
cantly compared to the agreement when the original MCTand how general this observation is. Therefore it would be
function is usedsee Fig. 2a)] and that forq values in the very valuable to make similar comparisons for different
vicinity of the first peak and the first maximum the agree-types of systems.

ment is perfect to within the noise of the simulation data. In an attempt to improve the agreement between the mea-
Also for the AB correlation functionFig. 6(b)] the agree- sured and theoretical nonergodicity parameters we intro-
ment between simulation and theory has improved consideduced an upper cutoff., in the integral of the memory
ably compared to the original MCT and the same conclusiorkernel and used, to match the critical temperatuiie, be-
holds for the coherent and incoherent nonergodicity paramtween MCT and simulation. We found that the introduction
eters for theB particles[Fig. 6(c)]. Thus we conclude that of this fit parameter leads to a worsening of the agreement
introducing one fit parameter, namely, the temperaliygeat ~ between the measured and theoretical nonergodicity param-
which the nonergodicity parameters are evaluated within theter, which shows that the contributions to the memory ker-
framework of MCT, leads to significant improvement of the nel from large values o are important for a quantitative

agreement between theory and simulation. correct description of the nonergodicity parameter. In a sec-
ond “modification” of the theory we used temperature as a
V. SUMMARY AND DISCUSSION fit parameter and determined a temperatligg<<T. such

) ~ that the resulting incoherent nonergodicity parameter for the
_ We have presented the results of a numerical calculation, particles fits the simulation data well. We found that at this
in which the mode-coupling equations were solved for a bixemperature also all the other nonergodicity parameters fit
nary Lennard-Jones mixture. The goal of these calculationghe data from the simulation well, in some cases even very
was to test whether the agreement between the predictions @fa)|. Thus it seems that there exists a temperaliyge for
MCT for the qunam_ics, which was investigated by means ofyhich MCT is able to predict very well the dependence of
a computer simulatiofl4—-18, holds only for the universal e various nonergodicity parameters as measured in the
predictions of the theory or also for the nonuniversal onesgimy|ationat T,. This shows that the intrinsic structure of the
Using the partial structure factors, as determined from gno4e-coupling equations are clearly able to correctly de-
computer simulation, as input, we computed within thegerihe such quantities and that it is perhaps only through the
framework of MCT the critical temperature, the exponentomission of certain contributions to the memory kerel that
parameter, they dependence of the various nonergodicity there is no perfect quantitative agreement between the pre-
parameters, and the various critical amplitudes. Although thgjiction of the theory and the results of the simulation.
critical temperature as predicted by MCT is a factor 2 larger T summarize, we can say that our calculations have
than the one determined from the computer simulation, Wgnhown that MCT is able to give a correguantitative de-
argue that this discrepancy is significantly smaller when exzcription of the dynamics of a simple liquid if one restricts
pressed through the effective coupling constants and is thegheself to quantities such as the critical temperature, the ex-
comparable with the discrepancies found for this quantity forponent parameter, the nonergodicity parameter, or the critical
systems such as hard sphef6} or soft sphere$11]. The  amplitudes. Whether MCT is also able to give a correct de-
exponent parameter as predicted by the theory is in faigcription of thefull time dependence of the various correla-
agreement with the one determined from the simulationjo, functions, as it is the case for tigerelaxation regime in

MCT makes a very good quantitative prediction for the qqigigal system$8], remains to be tested and is the subject
wave-vector dependence of the nonergodicity parameter fqys ongoing work.

values ofg in the vicinity of the first maximum and the first

minimum. For Igrge .vaIues crI; the agreement is still fair ACKNOWLEDGMENTS

and we can rationalize the increasing discrepancy between

theory and simulation by arguing that some of the approxi- We thank M. Fuchs for extensive help and enlightening

mations used to derive the mode-coupling equations ndliscussions during this work, W. & for valuable discus-

longer hold in this limit. In addition, we also showed that the sions and useful comments on the manuscript, K. Binder for

theory is also able to make a quantitatively correct predictiorhelpful comments on the manuscript, and J. L. Barrat for

of the various critical amplitudel (r). providing us with some programs that allowed to check our
We also compared thg dependence of the Kohlrausch- programs. This work was supported by SFB 262/D1 of the

Williams-Watts amplitude, as determined from the simula-Deutsche Forschungsgemeinschatt.

[1] W. Gaze, inLiquids, Freezing and the Glass TransitjdPro- [2] R. Schilling, in Disorder Effects on Relaxational Processes
ceedings of the Les Houches Summer School of Theoretical edited by R. Richert and A. Blume{Springer, Berlin, 199%
Physics, Les Houches, 1989, Session LI, edited by J. P. p. 193.

Hansen, D. Levesque, and J. Zinn-Jusghiorth-Holland, Am- [3] H. Z. Cummins, G. Li, W. M. Du, and J. Hernandez, Physica
sterdam, 1991 p. 287; W. Gdze and L. Sjgren, Rep. Prog. A 204, 169 (1994).
Phys.55, 241(1992. [4] Transp. Theory Stat. Phyg4, (6-8) (1995, Theme issue on



QUANTITATIVE TEST OF THE MODE-COUPLING ... 667

relaxation kinetics in supercooled liquids mode-coupling[13] J. N. Roux, J.-L. Barrat, and J.-P. Hansen, J. Phys. Condens.
theory and its experimental tests; edited by S. Yip. Matter 1, 7171(1989.

[5] T. Franosch, W. Gize, M. Mayr, and A. P. Singtiunpub-  [14] W. Kob and H. C. Andersen, Phys. Rev. Le®3, 1376

[6] P. N. Pusey and W. van Megen, Phys. Rev. LB, 2083

[7] J. P. Boon and S. YigWiolecular HydrodynamicgDover, New

lished. (1994.

[15] W. Kob and H. C. Andersen, Phys. Rev5H, 4626(1995.
(1987; W. van Megen, S. M. Underwood, and P. N. Pusey, [16] W. Kob and H. C. Andersen, Phys. Rev5@, 4134(1995.
ibid. 67, 1586(1991; W. van Megen and S. M. Underwood, [17] W. Kob and H. C. Andersen, Trans. Theory Stat. PH4.

Phys. Rev. &7, 248(1993; Phys. Rev. Lett70, 2766(1993; 1179(1999. .
[18] W. Kob and H. C. Andersen, Nuovo Cimento IB, 1291
Rev. E49, 4206(1994). (1994

York 1980 J.-P. H 41 R McDonaldh ¢ [19] W. Gaze, Z. Phys. B50, 195(1985.
_Or ’I ) 0’_ T angen and 1. R. McDonaldheory 0 [20] W. Gaize, inAmorphous and Liquid Metalgdited by E. Ls-
Simple Liquids(Academic, London, 1986 cher, G. Frisch, and G. Jacudgiijhoff, Dordrecht, 1987, p.

[8] W. Gaze and L. Sjgren, Phys. Rev. A3, 5442(1991J). 34.
[9]M. Fuchs, I Hofacker, and A. Latz, Phys. Rev.45, 898  [51] 5 Bosse and J. S. Thakur, Phys. Rev. L&8.998 (1987.

(1992. [22] M. Fuchs and A. Latz, Physica 201, 1 (1993.

[10] M. Fuchs, W. Gtze, S. Hildebrand, and A. Latz, Z. Phys. B [23] M. Fuchs, Ph.D. thesis, University of Munich, 1993.

87, 43(1992. [24] M. Fuchs(private communication

[11] J.-L. Barrat and A. Latz, J. Phys. Condens. Ma2erd289  [25] U. Bengtzelius, Phys. Rev. 83, 3433(1986.

(1990. [26] M. Nauroth, Diploma thesis, Mainz Universita 995.

[12] B. Bernu, J.-P. Hansen, Y. Hiwatari, and G. Pastore, Phys[27] U. Bengtzelius, W. Guze, and A. Sjtander, J. Phys. A7,

Rev. A 36, 4891(1987. 5915(1984.



