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Quantitative test of the mode-coupling theory of the ideal glass transition
for a binary Lennard-Jones system

Markus Nauroth and Walter Kob*
Institut für Physik, Johannes Gutenberg-Universita¨t, Staudinger Weg 7, D-55 099 Mainz, Germany

~Received 5 August 1996!

Using a molecular-dynamics computer simulation we determine the temperature dependence of the partial
structure factors for a binary Lennard-Jones system. These structure factors are used as input data to solve
numerically the wave-vector-dependent mode-coupling equations in the long-time limit. Using the so-
determined solutions, we compare the predictions of mode-coupling theory~MCT! with the results of a
previously done molecular-dynamics computer simulation@Phys. Rev. E51, 4626 ~1995!; 52, 4134 ~1995!#.
From this comparison we conclude that MCT gives a fair estimate of the critical coupling constant, gives a
good estimate of the exponent parameter, predicts the wave-vector dependence of the various nonergodicity
parameters very well, except for very large wave vectors, and gives also a very good description of the space
dependence of the various critical amplitudes. In an attempt to correct for some of the remaining discrepancies
between the theory and the results of the simulation, we investigate two small~ad hoc! modifications of the
theory. We find that one modification gives worse agreement between theory and simulation, whereas the
second one leads to improved agreement.@S1063-651X~97!02301-5#

PACS number~s!: 61.43.Fs, 61.20.Ja, 02.70.Ns, 64.70.Pf
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I. INTRODUCTION

In the past few years strong evidence was given that
certain types of glass formersat least the universal predic-
tions of the so-called mode-coupling theory~MCT! are cor-
rect in that it was shown that, e.g., there exists a criti
temperature Tc , the factorization property in the
b-relaxation regime holds, or two distinct diverging tim
scales can be observed. An introduction to the theory ca
found in some recent review articles@1–3# and in Ref.@4#
the reader will find a compendium of many investigatio
performed to test the validity of the theory. The outcome
most of these tests is that, at least for fragile glass form
MCT is a valid theory, although recent calculations ha
shown that the theory might even be applicable to relativ
strong glass formers, such as glycerol@5#. Apart from some
noticeable exceptions, discussed below, most of the t
done to check the validity of the theory investigated on
whether theuniversalpredictions of the theory are correc
The reason for this is the fact that thenonuniversalpredic-
tions of the theory, e.g., the value ofTc or the details of the
wave-vector dependence of the nonergodicity parame
can be tested only for those systems for which the temp
ture dependence of the structure factor~or of the partial
structure factors in the case of a multicomponent system! is
known with a fairly high accuracy. Since in most cases th
structure factors were not available with the required ac
racy, only the universal predictions of the theory could
tested. The drawback with these types of tests is that
various ~nonuniversal! parameters occurring in the theor
such as the exponent parameterl, the critical temperature
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Tc , or the nonergodicity parameterf c(q), had to be consid-
ered as fit parameters of the theory, thus making the tests
stringent. There are two exceptions to this. The first one
system of colloidal particles whose glass transition was st
ied extensively in light-scattering experiments by Pusey, v
Megen, and Underwood@6#. The structure of such systems
believed to be modeled well by a system of hard spheres.
the structure factor of the latter very reliable analytical e
pressions are available@7# and thus were used by Go¨tze and
Sjögren to demonstrate that in theb-relaxation regime the
dynamics of the colloidal particles could be described v
well with MCT @8#. Subsequently, Fuchset al.demonstrated
that this hard-sphere model is also able to give a good qu
titative description of thea relaxation @9,10#. The second
system is a model of soft spheres for which Barrat and L
showed@11# that MCT gives a fair quantitative description o
quantities such as the nonergodicity parameter and the c
cal coupling constant, which were determined by means
computer simulations@12,13#. Thus these two example
show that MCT is able to give not only aqualitativecorrect
description of the dynamics of supercooled liquids, but th
at least in some cases, it also gives aquantitativecorrect
description.

In a recent computer simulation we studied the dynam
of a mixture of Lennard-Jones particles@14–18#. It was
shown that at low temperatures the dynamics of this sys
could be described very well by MCT. However, in the
papers only the universal properties of the theory were te
since we used the data from the simulation to fit the occ
ring parameters of the theory. The goal of the present pa
is now to compare the results of the simulation with t
predictions of the theory without using any fit parameter
all. The only input to the theory will be the partial structu
factors that were obtained from the simulation. In this way
will be possible to make a more stringent test of the the
than it was done in Refs.@14–18# and therefore to tes
whether also for this system the theory is correct not only

ic
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658 55MARKUS NAUROTH AND WALTER KOB
a qualitative way but also in a quantitative way.
The rest of the paper is organized as follows. In Sec. II

collect the MCT equations needed to compute the vari
quantities we investigate. In Sec. III we give the details
the model and of the numerical calculations. In Sec. IV
present our results and in Sec. V we summarize and dis
them.

II. MODE-COUPLING THEORY

In this section we summarize the equations that are n
essary to describe the dynamics of the system within
framework of MCT. Most of these equations can also
found in Refs.@11,19–23#.

We consider a two-component system of classical p
ticles with particle concentrationsxi and massesmi ,
i51,2. In the following the dynamics of the system will b
described by means of the partial intermediate scatte
functions

Fi j ~q,t !5^dr i~q,0!dr j* ~q,t !&, ~1!

wheredr i(q,t) is the density fluctuation for wave vectorq at
time t of speciesi . For a binary system it is useful to collec
these functions in a 232 matrix F(q,t) with
@F(q,t)# i j5Fi j (q,t). The equation of motion ofF is given
by

F̈~q,t !1V2~q!F~q,t !1E
0

t

dt M ~q,t2t!Ḟ~q,t!50,

~2!

where the frequency matrixV2 is given by

@V2~q!# i j5q2kBT~xi /mi !(
k

d ik@S
21~q!#k j . ~3!

HereS(q) stands for the 232 matrix consisting of the par
tial structure factorsSi j (q). Within the mode-coupling ap
proximation the memory termM is given at long times by

Mi j ~q,t !5
kBT

2nmixj
E dk

~2p!3

3(
a,b

(
a8,b8

Viab~q,k!Vja8b8~q,q2k!

3Faa8~k,t !Fbb8~q2k,t !, ~4!

wheren is the particle density, the vertexViab(q,k) is given
by
e
s
f
e
ss

c-
e
e

r-

g

Viab~q,k!5
q•k

q
d ibcia~k!1

q•~q2k!

q
d iacib~q2k!,

~5!

and the matrix of the direct correlation function is defined

ci j ~q!5
d i j
xi

2@S21~q!# i j . ~6!

Making use of the isotropy of the system, the expression
Mi j (q,t) can be reduced to a two dimensional integral:

Mi j ~q,t !5
kBT

32nxjmip
2q3E0

`

dkkE
uq2ku

q1k

dpp

3(
a,b

(
a8,b8

Faa8~q,t !Fbb8~p,t !

3$~q21k22p2!d ibcia~k!1~q21p22k2!

3d iacib~p!%$~q21k22p2!d jb8cja8~k!

1~q21p22k2!d ja8cjb8~p!%. ~7!

The memory function for the incoherent intermediate scat
ing functionFi

(s) is given by

Mi
~s!~q,t !5E dk

~2p!3
1

n S q•kq D ~cF! i~k,t !Fi
~s!~q2k,t !

5
1

16p2nq3E0
`

dkE
uq2ku

q1k

dpp$q21k22p2%2

3~cF! i~k,t !Fi
~s!~p,t !, ~8!

with

~cF! i~k,t !5@cii ~q!#2Fii ~q,t !12cii ~q!ci j ~q!Fi j ~q,t !

1@ci j ~q!#2F j j ~q,t !, jÞ i . ~9!

The matrix of the nonergodicity parametersf(q) for the co-
herent intermediate scattering function is given by the so
tion of Eq. ~2! at long times, i.e.,f i j (q)5 limt→`Fi j (q,t). It
can be shown thatf(q) can be computed via the iterativ
procedure@23#
f~ l11!~q!5
S~q!•N@ f~ l !,f~ l !#~q!•S~q!1q22uS~q!uuN@ f~ l !,f~ l !#~q!uS~q!

q21Tr$S~q!•N@ f~ l !,f~ l !#~q!%1q22uS~q!uuN@ f~ l !,f~ l !#~q!u
, ~10!
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55 659QUANTITATIVE TEST OF THE MODE-COUPLING . . .
where the matrixN(q) is given by

Ni j ~q!5
mi

xikBT
Mi j ~q!. ~11!

For temperatures above the critical temperatureTc this itera-
tion converges to the trivial solutionf(q)50 whereas for
T,Tc it converges to a nontrivial solutionf(q).0.

The incoherent nonergodicity parameterf i
(s) can be com-

puted from the iterative procedure

q2
f i

~s,l11!~q!

12 f i
~s,l11!~q!

5Mi
~s!@ f, f i

~s,l !#~q!. ~12!

In order to determine the critical point it is useful to consid
the so-called stability matrixC, which is defined by its action
on a vectordf(q)5„df11(q),df12(q),df22(q)…,

~C•df!~q!5
1

q2
@S~q!2f~q!#•$M @ f,df#~q!

1M @df,f#~q!%•@S~q!2f~q!#. ~13!

We defineE0 to be the largest eigenvalue of this matr
e(k)5„e11(k),e12(k),e22(k)… as the corresponding right an
ê(k)5„ê11(k),ê12(k),ê22(k)… as the corresponding left e
genvector of this matrix. The normalization of these eige
vectors is given by@24#

E
0

`

dk (
n511,12,22

ên~k!en~k!51, ~14!

E
0

`

dk (
n511,12,22

ên~k!†e~k!•@S~k!2f~k!#21
•e~k!‡n51.

~15!

The critical amplitudesh(q)5„h11(q),h12(q),h22(q)… de-
scribe the dynamics of the system in theb-relaxation regime,
i.e.,

Fi j ~q,t !5 f c,i j ~q!1hi j ~q!g~ t !, ~16!

whereg(t) is a function that is independent ofq and whose
form depends on temperature and the so-called exponen
rameterl, and f c,i j are the nonergodicity parameters at t
critical temperature. This critical amplitude is given by t
value of the right eigenvector at the critical temperatu
Tc , i.e.,

hi j ~q!5ec,i j ~q!. ~17!

The value of the mentioned exponent parameterl is given
by

l5E
0

`

dq (
n511,12,22

êc,n~q!

3F 1q2 @S~q!2fc~q!#•M @ec ,ec#•@S~q!2fc~q!#G
n

.

~18!
r

-

a-

e

The procedure to compute the nonergodicity paramete
now the following. Given the partial structure factors for
temperatureT that corresponds to the glass state one co
putes from Eqs.~6! and ~7!, the memory kernel and iterate
Eq. ~10! until f( l )(q) has converged. Then the stability matr
C(q) and its largest eigenvalueE0 are computed. It can be
shown that in the vicinity of the critical temperatureTc the
relation

~12E0!
25A~Tc2T!1O„~Tc2T!2… ~19!

holds, which can thus be used for a precise determinatio
Tc . Having determinedTc , we can compute the right an
left eigenvalue ofC at Tc and thus obtain the critical ampli
tudeshi j (q) and the exponent parameterl @Eqs. ~17! and
~18!#. Using the nonergodicity parameters of the coher
intermediate scattering function, we can use Eqs.~8! and
~12! to compute finally the nonergodicity parameter for t
incoherent intermediate scattering function.

III. MODEL AND COMPUTATIONAL DETAILS

In this section we introduce the system we investigate
give some of the details of our numerical calculations. Mo
details on these calculations can be found in Ref.@26#.

The model we are studying is a binary mixture of classi
Lennard-Jones particles all of them having massm. The in-
teraction between two particles of typei and j ( i , j
P$A,B%) is given by Vi j (r )54e i j @(s i j /r )

122(s i j /r )
6#.

The parameterseab and sab are given by eAA51.0,
eAB51.5, eBB50.5, sAA51.0, sAB50.8, andsBB50.88.
The composition of the mixture is such thatxA50.8 and
xB50.2. In the following we will measure length scales
units ofsAA and energy in units ofeAA and setkB51.

In a recent simulation the dynamics of this system w
investigated by means of a molecular-dynamics compu
simulation @14–18#. This simulation used 800 particles o
typeA and 200 particles of typeB. The size of the cubic box
was held fixed atL59.4. In order to lower the computationa
burden the Lennard-Jones potential was truncated and sh
at a distance of 2.5sab . More details on that simulation ca
be found in the original papers. In that work also the par
structure factorsSi j (q) were calculated. This was done b
computing the space Fourier transform of the radial distri
tion functiongi j (r ). Because of the finite size of the syste
this Fourier transform gave rise to unphysical oscillations
the structure factors at small values ofq. Since these struc
ture factors are the~only! input in the mode-coupling equa
tions, such unphysical oscillations would possibly mod
the outcome of the MCT calculations. Therefore we repea
the simulations and computed the partial structure factor
rectly from the positions of the particles by means of Eq.~1!
and thus avoided the above-mentioned Fourier transform
order to filter out high-frequency noise inq the so-
determined structure factors were smoothed with a sp
under tension. Because of the finite size of the box, w
vectors with modulus less than 2p/L are not accessible
Therefore we extrapolated the determined partial struc
factors toq50.

These new simulations were done only for a few selec
values of the temperature, all of them in the vicinity
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660 55MARKUS NAUROTH AND WALTER KOB
the critical temperature, i.e., atT51.0, 0.8, and 0.6. For a
precise determination of the critical temperature we a
needed the structure factors at intermediate values of
temperature. Therefore we used the structure factors a
three mentioned temperatures and a quadratic interpola
scheme to compute the structure factors for intermed
temperatures. Since in this temperature region the struc
factors show only a weak variation with temperature, such
interpolation scheme should be fairly reliable. More deta
on the so-obtained structure factors are given in Sec. IV

The integral equations presented in Sec. II were sol
iteratively in the way described in that section. The occurr
integrals were computed using a high-order Simps
scheme.~Note that it is necessary to use an integrat
scheme that accesses only points that are spaced in an
distant way since the integrals involve convolutions. The
fore more efficient integration schemes such as Gaus
quadrature cannot be used.! The upper limit of the integrals
was set toqco540, which is sufficiently large to allow the
direct correlation function to be negligible small fo
q.qco. In order to perform the integration we used 300 g
points in the interval@0,qco#. A few calculations with a
larger number of points showed that this number is su
ciently large to neglect the dependence of the final results
the used discretisation scheme.

Close to the glass transition the convergence of the it
tion scheme given by Eq.~10! was quite slow since the
maximum eigenvalue was very close to unity (12E0
'331023, which corresponds toT2Tc'131025), and
only after 1000–2000 iterations reliable results could be
tained. Thus such an iteration took about 24 h on a med
level workstation. Note that in order to get results that
accurate to within 1% it is indeed necessary to determ
Tc that precisely, since, e.g., quantities such as the noner
icity parameters show a square-root dependence
(T2Tc).

IV. RESULTS

In this section we present the obtained results. In the
part we investigate whether MCT, as presented in Sec. I
able to predict correctly various quantities that are relevan
the dynamics of the supercooled liquid. In the second part
test whether two possible modifications of MCT lead to ev
better agreement between the theory and the simulation

The partial structure factorsSi j (q), crucial input for the
theory, were computed as described in Sec. III. The resul
structure factors are shown in Fig. 1 forT51.0, 0.8, and 0.6.
@Note that, although in our computation we usedSi j (q) for
all values of q up to qco540, we show only the range
0<q<20, since outside this interval the structure factors
almost constant.# From this figures we see that in that ran
of temperature the dependence of the structure factors
temperature is very smooth, thus justifying the interpolat
procedure described in Sec. III to obtain the structure fac
at intermediate values ofT.

Using the procedure described in Sec. II, we determi
the critical temperatureTc to be around 0.922. This value ha
to be compared with the result that was obtained from
molecular-dynamics computer simulation, which w
T50.43560.003@14–18#. Thus we find that, for the system
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considered here, MCT overestimates the critical tempera
by about a factor 2. Since the idealized theory neglects
tain types of relaxation processes, which are usually ca
hopping processes, it can be expected that the critical t
perature predicted by the theory is too high. Neverthelessat
first sight, the factor 2 seems to be surprisingly large wh
compared with the results of similar comparisons betwe
the prediction of MCT for the value of the critical couplin
parameter and the results of experiments or computer si
lations. For example, it was found in light-scattering expe
ments on colloidal particles, a system that is considered to
described well by a hard-sphere model, that these syst

FIG. 1. Partial structure factors for those temperatures used
the interpolation to obtain the partial structure factors at the crit
temperature:T51.0 ~dotted line!, T50.8 ~dashed line!, and
T50.6 ~solid line!. ~a! AA correlation,~b! AB correlation, and~c!
BB correlation.
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55 661QUANTITATIVE TEST OF THE MODE-COUPLING . . .
undergo a glass transition at a packing densityfc that is
between 0.56 and 0.58@6#. This value compares well with
the critical packing density of 0.5260.01 of MCT for a sys-
tem of hard spheres@27#. Thus, in this case the discrepan
between the experiments and the theory is about 10%. In
case of a binary system of soft spheres, i.e., a pair interac
that is proportional tor212, it was found by means of com
puter simulations that the glass transition occurs at a valu
the effective coupling constantG of 1.46 @12,13#. It can be
shown thatG is the only relevant parameter for the therm
dynamic state of such a system and that

G}nT21/4, ~20!

wheren is the particle density. Using the Roger-Young i
tegral equations to compute the structure factors for this
tem, Barrat and Latz computed the critical value of the c
pling constant within the framework of MCT and found it
be 1.32@11#. Using expression~20! we thus find that the
discrepancy is about 10% in the density, comparable to
above-mentioned discrepancy for the hard-sphere sys
but about 50% in the critical temperature.

Expression~20! is valid only for a soft-sphere system
However, since at low temperatures it is mainly the repuls
core of the particles that is important for the structure of
liquid, it can be expected that for a Lennard-Jones syst
which has the same type of hard core as the soft-sphere
tem, expression~20! is a reasonable approximation. This e
pectation is corroborated by the calculations of Bengtze
in which the critical temperatureTc was determined at dif-
ferent densities for the case of a one-component Lenn
Jones system~the structure factor was computed from t
so-called optimized random-phase approximation! @25#. In
that work it was shown that a change of 10% in density gi
rise to a change of a factor 2 inTc , in qualitative agreemen
with the results for the soft-sphere system. Thus we concl
that a discrepancy of a factor 2 in the critical temperat
correspond to a discrepancy between theory and simula
of only 20% in the coupling constant, which is comparable
the discrepancy found in the above-mentioned hard-sp
system and the soft-sphere system.

The next quantity for which we compare the prediction
the theory with the result of the computer simulation is t
exponent parameterl. In the simulation this parameter wa
determined by fitting the functional form provided by MC
for the b correlator@1# to the corresponding master curv
found in theb-relaxation regime@16,18#. Depending on the
type of correlator investigated, the value ofl was found to
vary between 0.75 and 0.83 with the most likely value
l50.7860.02. Our MCT calculations showed that for th
system the theory predicts a value of 0.708, which compa
quite well with the one found previously in the simulatio
The discrepancy inl between theory and computer simul
tion is in our case smaller than the one found for the s
sphere system, for which the theory predictedl50.73 @11#
and for whichl'0.61 was found in the simulation. Thi
latter value, however, probably has a relatively large er
bar, since it was determined from the critical exponent of
diffusion constant close toGc . This critical exponent was
determined to be around 2.0@12,13# and, if it is assumed tha
the connection predicted by MCT between this critical exp
he
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nent and the exponent parameterl holds@1#, one obtains the
quoted value ofl. However, there are two reasons why t
so-determined value ofl might be slightly wrong: First, the
value of the critical exponent is not known very precise
@12,13# and, second, it might well be that the abov
mentioned connection between the critical exponent for
diffusion constant and the exponent parameter holds o
very close to the critical temperature~or coupling param-
eter!. For example, in the simulation of the binary Lennar
Jones system it has been found that the critical exponen
the diffusion constant and the one for thea-relaxation times
differ by about 20%@16#, although MCT predicts these ex
ponents to be the same. Thus this shows that either the
nection proposed by MCT is not always valid or, in order
see the correct critical behavior, one has to be much close
the critical temperature than it is currently possible w
computer simulations~because very close to the critical poi
the time scales of thea relaxation exceeds the time sca
accessible to such simulations!. Furthermore, it can be that in
the vicinity of Tc the so-called hopping processes beco
important for the soft-sphere system and thus give rise to
effectiveexponent that is different from the one predicted
the theory. Thus because this connection between the cri
exponent of the diffusion constant and the exponent par
eterl is not beyond any doubt, the value ofl in the soft-
sphere model is not known very precisely. Finally, we me
tion that in the comparisons between the prediction of M
and the results of the experiments on colloidal systems
latter were always assumed to be hard spheres and thu
exponent parameter was not a fit parameter@8#.

We now turn our attention to the wave-vector depende
of the nonergodicity parameter. This quantity was det
mined in the simulation@16# and the results are shown fo
the coherent intermediate scattering functions for theAA, the
AB, and theBB correlation~bold dashed lines!, as well as
for the incoherent intermediate scattering function for theA
and theB particles in Fig. 2~thin dashed lines!. For small
values and very large values ofq it was not possible to
determinef c from the simulation because of problems wi
finite-size effects and statistics. Also included in the figu
are the predictions of MCT~solid lines!. First we consider
Fig. 2~a!, which showsf c(q) for theAA correlation and the
A particles. The first observation is that the theoretical cur
match the ones of the simulations qualitatively well for
values ofq in that the location of the various extrema in th
f c(q) for the coherent scattering function are reproduc
correctly. In addition, the fact that for large values ofq the
nonergodicity parameter for the coherent scattering func
oscillates around the one for the incoherent one is rep
duced correctly by the theory.

For wave vectors in the vicinity of the first peak of th
structure factor, also thequantitative accordance betwee
theory and simulation is very good. This agreement is no
good for wave vectors larger than the second peak in
structure factor. This can be due to two reasons. The first
is that the nonergodicity parameters as determined from
simulation are affected by systematic errors of unkno
magnitude@16#. From the way these quantities were me
sured it can be expected that these errors increase with
creasing wave vector, which might be the reason for
increasing discrepancy between simulation and theory.
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662 55MARKUS NAUROTH AND WALTER KOB
second possible reason is that for large values ofq MCT is
no longer reliable. This can be understood as follows. T
large wave vectors correspond to distances that are relat
small compared to the diameter of the particles. Now o
should remember that in the derivation of the MCT equatio
a factorization ansatz was made. This ansatz is reasonab
distances on the order of the diameter of a particle, bu
likely to be bad for much smaller distances. Thus it is e
pected that the verticesViab of Eq. ~5! are not quite correc
for large values ofq or k. Therefore it is not surprising tha
the accordance between the results of the simulations an

FIG. 2. Nonergodicity parameterf c(q) for the coherent~bold
lines! and incoherent~thin lines! intermediate scattering function
as determined from the simulation~dashed lines! and as predicted
by MCT ~solid lines!. ~a! A particles andAA correlation,~b! AB
correlation, and~c! B particles andBB correlation.
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predictions of MCT is not as good for large values ofq as it
is for wave vectors in the vicinity of the peak of the structu
factor.

Furthermore, we comment on two smaller features in
curves. First, we see that the curve for the nonergodi
parameter for the coherent scattering functions, as comp
from the simulation, shows to the left and to the right of t
large peaks~atq'7 and 12! a small peak. These small peak
are a finite-size effect that is due to the method we compu
the intermediate scattering function@16#. Thus the fact that
these small peaks are not present at all in the curve as c
puted from MCT should not be viewed as a failure of t
theory to reproduce this feature. Second, we see that
MCT curve for the coherent intermediate scattering funct
shows some small peaks for wave vectors smaller than
This behavior is likely to be due to numerical instabilities
the computation of this curve and therefore has no phys
relevance.

The wave-vector dependence of the nonergodicity par
eter for theAB correlation is shown in Fig. 2~b!. In order to
make clear where the measured points actually are, we s
them as open squares and the connecting dashed line sh
be considered just as a guide to the eye. We recognize
this q dependence is very different from the one found
theAA correlation. We see that for values ofq near 7 and 10
there is a gap in the data of the simulation. The reason
this is that in the vicinity of these wave vectors the part
structure factor of theAB correlation changes sign, which i
turn leads to a singularity and hence to numerical difficult
in determining the corresponding intermediate scatter
function. Also included in the figure is the prediction o
MCT for this nonergodicity parameter. We see that for int
mediate values ofq the theoretical curve describes the da
very well and we see that MCT correctly predicts the pr
ence of the just-mentioned singular behavior of the non
godicity parameter. For larger values ofq the agreement is
only qualitatively correct and the probable reason for this
been given above.

In Fig. 2~c! we show the wave-vector dependence of t
nonergodicity parameter for the coherent and incoherent
termediate scattering function for theB particles. From this
figure we see that for the coherent part this dependenc
very different from the one for theA particles since it re-
sembles much more theq dependence of the incoherent pa
This can be qualitatively understood by remembering t
the number ofB particles is smaller by a factor 5 than th
number ofA particles. Thus, since theB particles are rela-
tively dilute the coherent intermediate scattering function
haves very similarly to the single-particle correlation fun
tion, i.e., the incoherent intermediate scattering function.

As we can see from the figure, MCT is able to reprodu
the wave-vector dependence also of these two nonergod
parameters very well. Although the theoretical curves lie
low the ones from the computer simulation for all values
q, the agreement is, nevertheless, on the order of about
for intermediate values ofq.

From Fig. 2 we recognize that in all cases the nonerg
icity parameters as determined from the simulations is a
larger than the ones predicted by MCT. This is in qualitat
agreement with our observation that the critical temperat
as found in the simulation is quite a bit lower than the o
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predicted by the theory, which can be understood as follo
The nonergodicity parameter is some sort of measure
how much a particle can move in the cage formed by
surrounding particles. Since it can be expected that
movement is smaller the lower the temperature is, it follo
that the nonergodicity parameter increases with decrea
temperature. Thus we see that if MCT would have predic
a critical temperature that is lower than the one it pred
now, we would expect that the theoretical nonergodicity
rameters would be larger than the ones the theory pred
now. Thus we have evidence that the too high critical te
perature and the nonergodicity parameters that are too s
are related phenomena. We will return to this point below

The fact that the predicted nonergodicity parameters
smaller than the ones determined from the simulation m
vated us to compare the former with the amplitude of
a relaxation. It should be remembered that in the simulat
the nonergodicity parameter was determined from the he
of the plateau in the time correlation function. In these sim
lations it was shown that the height of this plateau isnot
equivalent to the amplitude of the Kohlrausch-William
Watts ~KWW! function, which describes the relaxation o
time scales beyond theb-relaxation time scale, i.e.
f(t)5A exp@2(t/t)b#. Since we have found that this KWW
amplitudeA is always a bit smaller than the nonergodic
parameter@16,18#, a fact that is also corroborated by analy
cal calculations on the hard-sphere model@9#, it is interesting
to compare theq dependence of this measured amplitu
with the q dependence of the nonergodicity parameter
predicted by MCT. This is done in Fig. 3. We see that for
correlation functions the agreement between these two q
tities is very good. To our surprise we find that this agre
ment is always better than the one between the nonergod
parameter of the simulation and the one of MCT, which w
shown in Fig. 2.~An exception is theAB correlation in the
range 5<q<7, where the experimental point forA are now
clearly below the MCT curve.! At the moment it is not clear
to us whether this surprising accordance between the KW
amplitude and the nonergodicity parameter of MCT is jus
coincidence or whether there is some underlying reason
it. One possibility might be that the corrections to the asym
totic scaling laws of MCT are larger for theb-relaxation
regime than for thea-relaxation regime. Thus it would b
interesting to compute the full time dependence of the c
relation functions within the framework of MCT and to com
pare the so-obtained results with the results from the si
lations. In addition, it would be helpful to make simila
comparisons with other systems in order to see whether
just-described phenomenon holds for other systems as w

The last quantity we investigate is the wave-vector dep
dence of the critical amplitudesh(q). These amplitudes ar
used to describe the time dependence of a correlation f
tion in theb-relaxation regime; see Eq.~16!. In the computer
simulation it was found that in theb-relaxation regime the
various intermediate scattering functions are indeed of
form of Eq. ~16! @15# in that it was demonstrated that th
left-hand side of

F~r ,t !2F~r ,t8!

F~r 8,t !2F~r 8,t8!
5

H~r !

H~r 8!
, ~21!
s.
or
s
is
s
ng
d
s
-
ts
-
all

re
i-
e
n
ht
-

s
l
n-
-
ity
s

a
or
-

r-

u-

he
ll.
-

c-

e

which is obtained from the space Fourier transform of E
~16!, holds if the timest and t8 are on the time scale of th
b relaxation. Herer 8 can be chosen arbitrarily. From tha
calculation it was possible to estimate an upper and lo
bound forH(r ), and these bounds are shown in Fig. 4 for t
three coherent intermediate scattering functions~thin solid
lines!. The value ofr 8 was 1.095, 0.9, and 1.73 for th
AA, the AB, and theBB correlation. Also included in the
figures are the prediction of MCT for these quantities~bold
solid lines!. From these figures we recognize that the agr
ment between the results of the computer simulation and

FIG. 3. Kohlrausch-Williams-Watts amplitudeA for the coher-
ent ~bold lines! and incoherent~thin lines! intermediate scattering
functions as determined from the simulation~dashed lines! and non-
ergodicity parameter as predicted by MCT~solid lines!. ~a! A par-
ticles andAA correlation,~b! AB correlation,~c! B particles and
BB correlation.
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prediction of the theory is, in the case of theAA and the
AB correlation, qualitatively as well as quantitatively ve
good in that also small details in the curves, such as the s
dip in the peak at around 1.8, are reproduced correctly.
agreement between simulation and theory is not that good
the case of theBB correlation in that the amplitude of th
various peaks is not predicted correctly. However, the p
tion of these peaks is in accordance with the theory and
MCT is correct for this correlation function at least qualit
tively. We also notice that in all three cases the agreem
between theory and simulation is not very good at sm

FIG. 4. Critical amplitudeH(r ) for the coherent intermediat
scattering function as predicted by MCT~bold solid line! and the
upper and lower bounds for this function~thin lines! as determined
from the simulation. The dashed lines arex times the corresponding
radial distribution function atT50.466. ~a! AA correlation,
x50.25; ~b! AB correlation, x50.2; and ~c! BB correlation,
x50.8.
all
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distances. This is not surprising, since we have already
plained above why MCT is not very accurate for large wa
vectors, i.e., small distances.

In order to gain some insight into the nature of the vario
peaks inH(r ) we have included in the figures also the co
responding radial distribution functionsgi j (r ) at T50.466,
the lowest temperature considered in the computer sim
tion @15# ~dashed curves!. We see that, for values ofr larger
than the first nearest-neighbor peak, the different max
and minima inH(r ) occur at the same location at which th
correspondinggi j (r ) shows its extrema. This means that
q spacehi j (q) shows extrema at the same values ofq as the
corresponding partial structure factor. Since the latter sho
a similarq dependence as the corresponding coherent n
ergodicity parameter~see Fig. 2!, the nonergodicity param
eter andhi j (q) will show extrema at the same values ofq. A
similar observation was made in the case of the soft-sph
system @11# and thus it can be conjectured that this is
general rule.

In the remaining of this section we present the results
obtained by considering two small modification of MCT
These modifications were done in an attempt to improve
agreement between the results of the computer simula
and the prediction of the theory.

The basic idea of the first modification is as follows.
the first part of this section we have shown that MCT is a
to give a surprisingly good description of theq dependence
of the nonergodicity parameters and the critical amplitud
The most severe disagreement seems to be that the th
overestimates the critical temperature by quite a bit. Furth
more we have seen that the theory underestimates the
ergodicity parameter and that this disagreement is most
nounced at large values ofq. In the discussion of this effec
we argued that one of the reason for its occurrence migh
that a factorization ansatz, which is used in the derivation
the MCT equations, breaks down for small distances a
therefore the MCT equations are not accurate for these
ues ofq. Therefore one could argue that it is better to lea
out from the calculation of the memory kernel in Eq.~4! that
part of the wave-vector integration altogether, i.e., to rest
the integration to wave vectors with modulus less than
certain limit qco. This approximation is equivalent to th
assumption that the structure factor is constant forq>qco.
Thus the value ofqco can be used as a fit parameter in ord
to match the critical temperature as predicted by MCT w
the one determined from the simulation. The hope is that
fix of the critical temperature will lead to theoretical none
godicity parameters that are in better agreement with
ones of the simulation~of course at the cost that for wav
vectors larger thanqco the theory does not give any none
godicity parameter at all!.

Thus we proceeded as follows. Using the partial struct
factors that we determined atT50.466, 0.475, and 0.5, we
made an extrapolation to determine the partial structure
tors atT50.435, the value of the critical temperature as d
termined from the computer simulation. Since at these l
temperatures the temperature dependence of the stru
factors is only weak and very regular, such an extrapolat
is not problematic. Equipped with the structure factors at
correct critical temperature, we determinedqco such that the
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55 665QUANTITATIVE TEST OF THE MODE-COUPLING . . .
critical temperature as determined from MCT is exactly
T50.435, i.e., the critical temperature from the simulatio
The value ofqco we obtained was around 11.7, i.e., a bit
the right of the first minimum in the partial structure fact
for the AA correlation. This value shows, on the one han
that it is mainly the first peak in the structure factor that
relevant to give aqualitativecorrect description of the tran
sition and, on the other hand, that for aquantitativecorrect
calculation of the transition temperature it is necessary
take into account the structure also for larger values ofq.
With this value ofqco we computed theq dependence of the
nonergodicity parameters and the result for theAA correla-
tion are shown in Fig. 5~solid line!. Also included is the
curve from the simulation~bold dashed line! and, as a refer-
ence, the curve whenqco is 40, i.e., the value ofqco used to
compute the results of the first part of this section~thin
dashed line!. From this figure we recognize that the curve f
the new value ofqco is now significantly below the curve
from the simulation and that the discrepancy between
~modified! theory and simulation is now quite a bit larg
than it was with the original theory. Thus this shows tw
things: first, that the contribution to the memory kernel th
come from values ofq larger thanqco511.7 are important in
order to get quantitatively correct results, despite the abo
discussed fact that the integrand is not quite appropriate
such large values ofq, and second, that it is not that easy
improve the theory qualitatively by introducing a fit param
eter in order to fix certain shortcomings of the theory~e.g.,
the not so satisfactory prediction of the critical temperatu!.

The second modification of the theory we did was to
nore the fact that we have to compare the results for thq
dependence of the nonergodicity parameter as obtained
the simulation with the prediction of MCT for the nonergo
icity parameterat the critical temperature Tc. Since we have
seen that MCT underestimates the nonergodicity parame
and we know that for temperaturesT,Tc the theory predicts
that the nonergodicity parameters increase, we tried to
rect this discrepancy by computingf A

(s)(q) at a temperature
Teff below Tc and to determineTeff by requiring that this
nonergodicity parameter, which we will callf eff

(s) , fits the
corresponding quantity from the simulation well. The reas

FIG. 5. Nonergodicity parameter for the coherent intermed
scattering function for theAA correlation as determined from th
simulation ~bold dashed line! and the prediction of MCT for
qco511.7 ~solid line! andqco540 ~dashed line!.
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for choosing this type of nonergodicity parameter, instead
e.g., the one for theAA correlation, is that in the simulation
it can be determined with the best accuracy. This fit gav
value for Teff around 0.91, thus quite close to the origin
critical temperatureTc50.922. The resultingq dependence
of f eff

(s) is shown in Fig. 6~a! together withf c
(s) from the simu-

lation. We see that for small and intermediate values ofq the
agreement betweenf eff

(s) and f c
(s) is very good. Only for large

values ofq significant, but not large, discrepancies occ
We also computed theq dependence of the other nonergo
icity parameters for thesame temperature Teff and the results

e

FIG. 6. Nonergodicity parameterf c(q) for the coherent~bold
lines! and incoherent~thin lines! intermediate scattering function
as determined from the simulation~dashed lines!. The solid lines
are results for the nonergodicity parameter as predicted by MCT
the temperatureTeff50.91. ~a! A particles andAA correlation,~b!
AB correlation, and~c! B particles andBB correlation.
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666 55MARKUS NAUROTH AND WALTER KOB
are shown in Fig. 6. From Fig. 6~a! we see that for the
coherent nonergodicity parameter for theAA correlation the
agreement betweenf c(q) and f eff(q) has improved signifi-
cantly compared to the agreement when the original M
function is used@see Fig. 2~a!# and that forq values in the
vicinity of the first peak and the first maximum the agre
ment is perfect to within the noise of the simulation da
Also for theAB correlation function@Fig. 6~b!# the agree-
ment between simulation and theory has improved consi
ably compared to the original MCT and the same conclus
holds for the coherent and incoherent nonergodicity par
eters for theB particles@Fig. 6~c!#. Thus we conclude tha
introducing one fit parameter, namely, the temperatureTeff at
which the nonergodicity parameters are evaluated within
framework of MCT, leads to significant improvement of th
agreement between theory and simulation.

V. SUMMARY AND DISCUSSION

We have presented the results of a numerical calcula
in which the mode-coupling equations were solved for a
nary Lennard-Jones mixture. The goal of these calculati
was to test whether the agreement between the prediction
MCT for the dynamics, which was investigated by means
a computer simulation@14–18#, holds only for the universa
predictions of the theory or also for the nonuniversal on
Using the partial structure factors, as determined from
computer simulation, as input, we computed within t
framework of MCT the critical temperature, the expone
parameter, theq dependence of the various nonergodic
parameters, and the various critical amplitudes. Although
critical temperature as predicted by MCT is a factor 2 lar
than the one determined from the computer simulation,
argue that this discrepancy is significantly smaller when
pressed through the effective coupling constants and is
comparable with the discrepancies found for this quantity
systems such as hard spheres@6# or soft spheres@11#. The
exponent parameter as predicted by the theory is in
agreement with the one determined from the simulati
MCT makes a very good quantitative prediction for t
wave-vector dependence of the nonergodicity parameter
values ofq in the vicinity of the first maximum and the firs
minimum. For large values ofq the agreement is still fair
and we can rationalize the increasing discrepancy betw
theory and simulation by arguing that some of the appro
mations used to derive the mode-coupling equations
longer hold in this limit. In addition, we also showed that t
theory is also able to make a quantitatively correct predict
of the various critical amplitudesH(r ).

We also compared theq dependence of the Kohlrausch
Williams-Watts amplitude, as determined from the simu
tic
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tion, with theq dependence of the nonergodicity parame
as predicted by MCT and found that the two quantities ma
surprisingly well. So far it is not clear why this is the ca
and how general this observation is. Therefore it would
very valuable to make similar comparisons for differe
types of systems.

In an attempt to improve the agreement between the m
sured and theoretical nonergodicity parameters we in
duced an upper cutoffqco in the integral of the memory
kernel and usedqco to match the critical temperatureTc be-
tween MCT and simulation. We found that the introducti
of this fit parameter leads to a worsening of the agreem
between the measured and theoretical nonergodicity par
eter, which shows that the contributions to the memory k
nel from large values ofq are important for a quantitative
correct description of the nonergodicity parameter. In a s
ond ‘‘modification’’ of the theory we used temperature as
fit parameter and determined a temperatureTeff,Tc such
that the resulting incoherent nonergodicity parameter for
A particles fits the simulation data well. We found that at th
temperature also all the other nonergodicity parameters
the data from the simulation well, in some cases even v
well. Thus it seems that there exists a temperatureTeff for
which MCT is able to predict very well theq dependence of
the various nonergodicity parameters as measured in
simulationat Tc. This shows that the intrinsic structure of th
mode-coupling equations are clearly able to correctly
scribe such quantities and that it is perhaps only through
omission of certain contributions to the memory kernel th
there is no perfect quantitative agreement between the
diction of the theory and the results of the simulation.

To summarize, we can say that our calculations ha
shown that MCT is able to give a correctquantitativede-
scription of the dynamics of a simple liquid if one restric
oneself to quantities such as the critical temperature, the
ponent parameter, the nonergodicity parameter, or the cri
amplitudes. Whether MCT is also able to give a correct
scription of thefull time dependence of the various correl
tion functions, as it is the case for theb-relaxation regime in
colloidal systems@8#, remains to be tested and is the subje
of ongoing work.
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